

IRP 4.3: Advanced Monitoring and Controls of the Electrical Distribution Network

Miguel Picallo Cruz

Marie Curie Ph.D. Student – Smart Grid Controls, GE Global Research & TU Delft

This project has received funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No 675318

My research topic

Problems

- Large number of buses, but few measurements available + expensive to install all sensors. Not observable
- Coupled 3-phases and unbalanced loads. More complex power flow
- Simple load allocation methods based on estimations produce large inaccuracies
- → Not prepared for Distributed Energy Generation (PVs, EVs, Batteries, etc.)

PhD

Monitoring

Distribution System State Estimationusing sensor information

Optimal Sensor Placement to maximize network observability

Controls

Controls to ensure stability and optimize operation

1 Two Step State Estimation

Problem statement:

• State Estimation = network voltages V estimation using measurements z = h(V) + noise:

$$V = \operatorname{argmin}_{V}(z - h(V))^{T} \Sigma_{noise}^{-1}(z - h(V))$$

- Mixed measurements z: 1. Load estimations (load forecast, installed/contracted capacity)
 - 2. Real-time measurements (Smart Meter, Phasor Measurement Units)

Two Step State Estimation: split problem (extending Schenato et al., 2014¹):

Prior Solution

Solve the **Power Flow** problem using load pseudomeasurements / estimations:

$$V_{prior} = PowerFlow(S_{pseudo})$$

Offline Iterative High computational cost

Posterior Update Improve prior solution using real-time measurements $z_{RT} = C_{RT}(V) + noise$: $V_{post} = V_{prior} + K(z_{RT} - C_{RT}(V_{prior}))$

• Optimal Bayesian gain K w.r.t. trace of estimation covariance: $K = \operatorname{argmin} \operatorname{tr}(\Sigma_{post})$

Real-time / Online
No iterations
Low computational cost

¹ L. Schenato, G. Barchi, D. Macii, R. Arghandeh, K. Poolla, and A. Von Meier, "Bayesian linear state estimation using smart meters and pmus measurements in distribution grids," in 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm).

2 Optimal sensors: definition

Problem statement:

• Sensor optimal allocation = choose optimal number and location of sensors with budget B w.r.t. metric f:

$$x = \operatorname{argmin}_{x} \left(f\left(\Sigma_{post}(x)\right) \right) s. t. \sum_{i} c_{i} x_{i} \leq B, x_{i} \in \{0,1\}$$

where $x_{i} = 1$ (0) if sensor i is (not) selected and $c_{i} \geq 0 \ \forall i$ is the cost of installing it

■ Combinatorial optimization → NP-hard problem

Metrics	f=	Covariance eigenvalues	Convex	Gradient expression	Linear	Super- modular ¹
A-opt.	$\operatorname{tr}(\Sigma_{post})$	Sum		\checkmark		
D-opt.	$\log(\det(\Sigma_{post}))$	Logarithm of product	1	\checkmark		\checkmark
E-opt.	$\lambda_{max}(\Sigma_{post})$	Maximum	1			
T-opt.	$-\mathrm{tr}(\Sigma_{post}^{-1})$? (Fisher Information)	\checkmark	\checkmark	\checkmark	\checkmark

¹ Supermodular set function f(): For sets $X \subseteq Y \subseteq \Omega \setminus \{a\}$, then $f(Y \cup \{a\}) - f(Y) \ge f(X \cup \{a\}) - f(X)$

2 Optimal sensors: approximations

Lower bounds

Convex relaxation:

- $x_i \in \{0,1\} \to x_i \in [0,1]$, convex set
- \rightarrow Global minimum x_{convex} for convex relaxed problem, but not feasible w.r.t. real problem

Supermodularity minimization:

- 1. $\tilde{f}_{greedy} = (1 \prod_{i} (1 \frac{c_i}{B}) x_{greedy,i}) f(x_{greedy})$
- 2. Select best single sensors till filling budget¹: $\operatorname{argmin}_{i \in \mathcal{B}, i \notin X} f(\{i\})$
- \rightarrow Online bound x_{online}

Upper bounds

Feasible solution:

- Select best sensors of x_{convex} till filling budget¹: argmin_{$i \in \mathcal{B}, i \notin X$} $x_{convex, i}$
- \rightarrow Feasible, yet suboptimal solution $x_{feasible}$

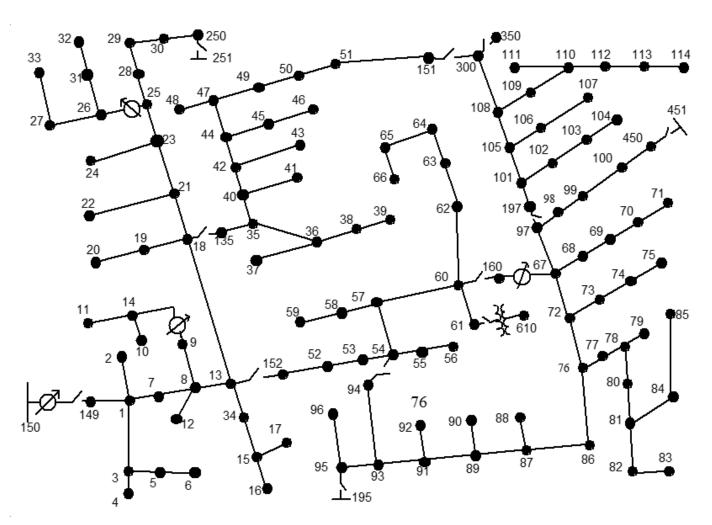
Greedy forward selection:

- Select best incremental sensor till filling budget¹: $\operatorname{argmin}_{i \in \mathcal{B}, i \notin X} \frac{f(X \cup \{i\}) f(X)}{c_i}$
- \rightarrow Greedy feasible suboptimal solution x_{greedy}

$$\max \left(f(x_{convex}), f(x_{online}), \tilde{f}_{greedy} \right) \leq f(x_{minimum}) \leq \min \left(f(x_{feasible}), f(x_{greedy}) \right)$$

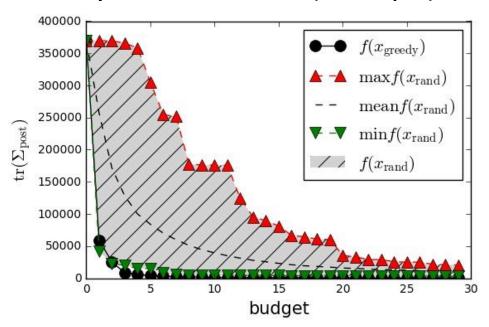
¹ Where X denotes the selected sensors by each method and $\mathcal{B} = \{i | c_i \leq \sum_{j \in X} c_j\}$ is the set of possible sensors satisfying the budget

Test Feeder: IEEE 123 Node

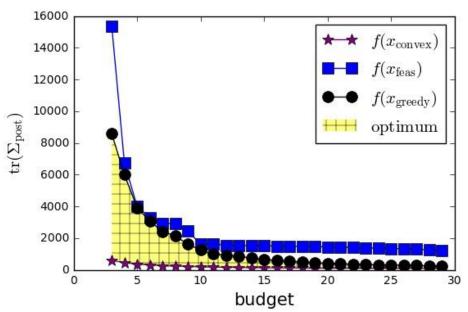


Results for A-opt.

Greedy vs Random Placement (100 samples)

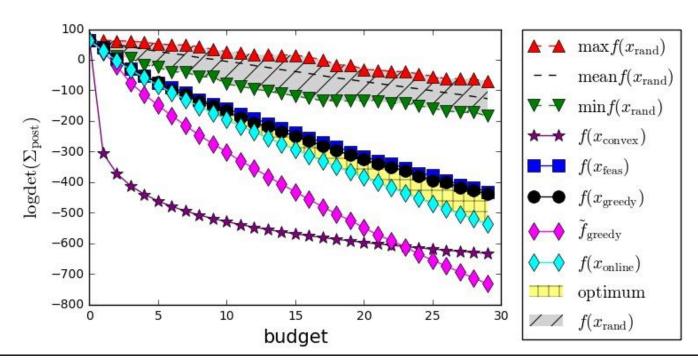


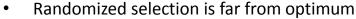
Bounds & possible optimum



- Randomized selection might be far from optimum
- Convex relaxation bound is too optimistic for small number of sensors, but useful for many sensors
- → Greedy solution is sufficiently good for large number of sensors

Results for D-opt.





- Convex relaxation bound is too optimistic for small number of sensors, but useful for many sensors
- Tight bound area for actual minimum combining all bounds
- → Greedy solution is sufficiently good

