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Monitoring 

My research topic 

Problems PhD 

 
 Large number of buses, but few 

measurements available + expensive 
to install all sensors. Not observable 
 

 Coupled 3-phases and unbalanced 
loads. More complex power flow 
 

 Simple load allocation methods 
based on estimations produce large 
inaccuracies 
 

 Not prepared for Distributed Energy 
Generation (PVs, EVs, Batteries, etc.) 

 
 

Distribution System State Estimation  

using sensor information 

1 

Optimal Sensor Placement  

to maximize network observability 

2 

Controls to ensure stability  

and optimize operation 

Controls 



Two Step State Estimation 
Problem statement: 

 State Estimation = network voltages 𝑉 estimation using measurements 𝑧 = ℎ 𝑉 + 𝑛𝑜𝑖𝑠𝑒: 

  𝑉 = argmin𝑉(𝑧 − ℎ(𝑉))𝑇Σ𝑛𝑜𝑖𝑠𝑒
−1 (𝑧 − ℎ 𝑉 ) 

 Mixed measurements 𝑧:  

 

 

 

Two Step State Estimation: split problem (extending Schenato et al., 20141): 
 

 

1 L. Schenato, G. Barchi, D. Macii, R. Arghandeh, K. Poolla, and A. Von Meier, “Bayesian linear state estimation using smart meters and pmus 
measurements in distribution grids,” in 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm). 
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Prior 
Solution 

Posterior 
Update 

 Solve the Power Flow problem using load pseudo-
measurements / estimations: 

𝑉𝑝𝑟𝑖𝑜𝑟 = 𝑃𝑜𝑤𝑒𝑟𝐹𝑙𝑜𝑤 𝑆𝑝𝑠𝑒𝑢𝑑𝑜  

 
 

 Improve prior solution using real-time measurements 
𝑧𝑅𝑇 = 𝐶𝑅𝑇(𝑉) + 𝑛𝑜𝑖𝑠𝑒:  

𝑉𝑝𝑜𝑠𝑡 = 𝑉𝑝𝑟𝑖𝑜𝑟 + 𝐾 𝑧𝑅𝑇 − 𝐶𝑅𝑇(𝑉𝑝𝑟𝑖𝑜𝑟)  

 
 Optimal Bayesian gain 𝐾 w.r.t. trace of estimation 

covariance: 𝐾 = argmin tr(Σ𝑝𝑜𝑠𝑡) 

 

Offline 
Iterative 
High computational cost 

Real-time / Online 
No iterations 
Low computational cost 

1. Load estimations (load forecast, installed/contracted capacity) 
2. Real-time measurements (Smart Meter, Phasor Measurement Units) 



Problem statement: 

 Sensor optimal allocation = choose optimal number and location of sensors with budget 𝐵 w.r.t. metric 𝑓: 

 𝑥 = argmin𝑥 𝑓 Σ𝑝𝑜𝑠𝑡(𝑥) 𝑠. 𝑡.  𝑐𝑖𝑥𝑖𝑖 ≤ 𝐵, 𝑥𝑖 ∈ 0,1               

 where 𝑥𝑖 = 1 0  if sensor 𝑖 is (not) selected and 𝑐𝑖 ≥ 0 ∀𝑖 is the cost of installing it  

 Combinatorial optimization  NP-hard problem 

 

Optimal sensors: definition 2 

1 Supermodular set function 𝑓(): For sets 𝑋 ⊆ 𝑌 ⊆ Ω\{𝑎}, then 𝑓 𝑌 ∪ 𝑎 − 𝑓 𝑌 ≥ 𝑓 𝑋 ∪ 𝑎 − 𝑓(𝑋) 

Metrics 𝑓= Covariance 
eigenvalues 

Convex Gradient 
expression 

Linear  Super-
modular1 

A-opt. tr (Σ𝑝𝑜𝑠𝑡) Sum  

D-opt. log det Σ𝑝𝑜𝑠𝑡  Logarithm of product 

E-opt. 𝜆𝑚𝑎𝑥 (Σ𝑝𝑜𝑠𝑡) Maximum 

T-opt. −tr (Σ𝑝𝑜𝑠𝑡
−1 ) ? (Fisher Information) 



Feasible solution: 

• Select best sensors of 𝑥𝑐𝑜𝑛𝑣𝑒𝑥 till filling budget1: 
argmin𝑖∈ℬ,𝑖∉𝑋 𝑥𝑐𝑜𝑛𝑣𝑒𝑥,𝑖  

 Feasible, yet suboptimal solution 𝑥𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒   

 

Greedy forward selection: 

• Select best incremental sensor till filling budget1: 

argmin𝑖∈ℬ,𝑖∉𝑋
𝑓 𝑋∪ 𝑖 −𝑓(𝑋)

𝑐𝑖
 

 Greedy feasible suboptimal solution 𝑥𝑔𝑟𝑒𝑒𝑑𝑦  

 

Optimal sensors: approximations 2 

Convex relaxation: 

• 𝑥𝑖 ∈ {0,1}  𝑥𝑖 ∈ 0,1 , convex set 

 Global minimum 𝑥𝑐𝑜𝑛𝑣𝑒𝑥 for convex relaxed 
problem, but not feasible w.r.t. real problem   

 

Supermodularity minimization: 

1.  𝑓 𝑔𝑟𝑒𝑒𝑑𝑦 = (1 −  1 −
𝑐𝑖

𝐵
𝑥𝑔𝑟𝑒𝑒𝑑𝑦,𝑖𝑖 ) 𝑓 𝑥𝑔𝑟𝑒𝑒𝑑𝑦  

2. Select best single sensors till filling budget1:  
argmin𝑖∈ℬ,𝑖∉𝑋 𝑓 𝑖  

 Online bound 𝑥𝑜𝑛𝑙𝑖𝑛𝑒 

 

Lower bounds Upper bounds 

1 Where 𝑋 denotes the selected sensors by each method and ℬ = {𝑖|𝑐𝑖 ≤  𝑐𝑗𝑗∈𝑋 } is the set of possible sensors satisfying the budget 

 

max 𝑓 𝑥𝑐𝑜𝑛𝑣𝑒𝑥 , 𝑓 𝑥𝑜𝑛𝑙𝑖𝑛𝑒 , 𝑓 𝑔𝑟𝑒𝑒𝑑𝑦 ≤ 𝑓 𝑥𝑚𝑖𝑛𝑖𝑚𝑢𝑚 ≤ min f 𝑥𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 , f 𝑥𝑔𝑟𝑒𝑒𝑑𝑦  
 



Test Feeder: IEEE 123 Node  



• Randomized selection might be far from optimum 
• Convex relaxation bound is too optimistic for small number of sensors, but useful for many sensors  
Greedy solution is sufficiently good for large number of sensors 

Results for A-opt. 
Bounds & possible optimum Greedy vs Random Placement (100 samples) 

 



Results for D-opt. 

• Randomized selection is far from optimum 
• Convex relaxation bound is too optimistic for small number of sensors, but useful for many sensors  
• Tight bound area for actual minimum combining all bounds 
Greedy solution is sufficiently good 


