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My research topic

Problems PhD
Monitoring
1
= Large number of buses, but few
measurements available + expensive J IULIC . : :
to install all sensors. Not observable 0 Senso ormatio

= Coupled 3-phases and unbalanced
loads. More complex power flow

Optimal Sensor Placement

= Simple load allocation methods to maximize network observability

based on estimations produce large
inaccuracies

Controls

-> Not prepared for Distributed Energy

Generation (PVs, EVs, Batteries, etc.) "
Controls to ensure stability

and optimize operation
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OTwo Step State Estimation

Problem statement:
=  State Estimation = network voltages V estimation using measurements z = h(V) + noise:
V = argminy, (z — h(V))TZ 2. (z — h(V))
=  Mixed measurements z: 1. Load estimations (load forecast, installed/contracted capacity)
2. Real-time measurements (Smart Meter, Phasor Measurement Units)

Two Step State Estimation: split problem (extending Schenato et al., 20141):

=  Solve the Power Flow problem using load pseudo-

L Offline
Prior measurements / estimations: lterative
Solution Vorior = PowerFZOW(SpseudO) High computational cost

\/ ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''

~~_—"| * Improve prior solution using real-time measurements
Zpr = Crr (V) + noise:
Vpost = Vprior + K(ZRT - CRT(Vprior))

Real-time / Online
No iterations

. Low computational cost
Posterior

Update ) ) ) . .
P = Optimal Bayesian gain K w.r.t. trace of estimation

covariance: K = argmin tr(Z,,s)

S ur

\/

1L. Schenato, G. Barchi, D. Macii, R. Arghandeh, K. Poolla, and A. Von Meier, “Bayesian linear state estimation using smart meters and pmus
measurements in distribution grids,” in 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm).
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@O0ptimal sensors: definition

Problem statement:
=  Sensor optimal allocation = choose optimal number and location of sensors with budget B w.r.t. metric f:

X = argmin, (f(Zpost(x))) s.t.);cix; < B,x; € {0,1}

where x; = 1 (0) if sensor i is (not) selected and ¢; = 0 Vi is the cost of installing it

»  Combinatorial optimization > NP-hard problem

Covariance Convex Gradient Linear Super-
eigenvalues expressnon modular?!

A-opt. tr(Zpost)

/ v
v v Y

D-opt. log(det(zpost)) Logarithm of product

E-opt. Amax Zpost) Maximum

SN

T-opt. —tr(Zp0st) ? (Fisher Information)

1Supermodular set function f(): Forsets X € Y € Q\{a},then f(Y U {a}) — f(YV) = f(X U {a}) — f(X)
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@ Optimal sensors: approximations

Lower bounds

Upper bounds

Convex relaxation:
* x; €{0,1} > x; € [0,1], convex set

=  Global minimum X ,,ye, for convex relaxed
problem, but not feasible w.r.t. real problem

Supermodularity minimization:

1. fgreedy =1 -1II (1 - %) Xgreedy,i) f(xgreedy)

2. Select best single sensors till filling budget?:
argmin;ep jex f({i})

= Online bound x,,ine

S =

Feasible solution:

* Select best sensors of X ey till filling budget?:
argminieB,iGEX Xconvex,i

—~> Feasible, yet suboptimal solution Xfeqsipie

Greedy forward selection:
* Select best incremental sensor till filling budget?:
: Xu{i)—f(x
argmlnieB,i&Xf ( Uﬁg? (%)

—~> Greedy feasible suboptimal solution Xg,¢eqy

max(f(xconvex)' f(xonline)' fgreedy) < f(xminimum) < min (f(xfeasible)'f(xgreedy))

! Where X denotes the selected sensors by each method and B = {i|c; < ZjEX ¢} is the set of possible sensors satisfying the budget
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Test Feeder: IEEE 123 Node
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Results for A-opt.

Greedy vs Random Placement (100 samples)
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* Randomized selection might be far from optimum
* Convex relaxation bound is too optimistic for small number of sensors, but useful for many sensors
- Greedy solution is sufficiently good for large number of sensors
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Results for D-opt.
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* Randomized selection is far from optimum

* Convex relaxation bound is too optimistic for small number of sensors, but useful for many sensors
* Tight bound area for actual minimum combining all bounds

- Greedy solution is sufficiently good
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